شناسایی مسائل هوش مصنوعی مولد در سازمان‌ها با تأکید بر ابعاد اخلاقی و پایدار

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مدیریت فناوری اطلاعات، دانشگاه پیام نور، تهران ، ایران

10.22081/jare.2025.72615.2076

چکیده

با رشد شتابان فناوری‌های هوش مصنوعی مولد و گسترش روزافزون کاربردهای آن در حوزه‌های گوناگون، ضرورت بررسی پیامدها و چالش‌های ناشی از به‌کارگیری این فناوری بیش از پیش آشکار شده است. هدف این پژوهش شناسایی و تحلیل چالش‌های به‌کارگیری هوش مصنوعی مولد در سازمان‌ها بود. رویکرد پژوهش کیفی و مبتنی بر تحلیل مضمون بوده و داده‌ها از طریق مصاحبه‌های نیمه‌ساختاریافته با خبرگان گردآوری شد. یافته‌ها نشان داد که چالش‌های شناسایی‌شده در قالب شش مضمون اصلی شفافیت و پاسخگویی، حقوقی، امنیتی و حاکمیتی، انسانی و فرهنگی، کیفیت و اعتبار محتوا و اقتصادی و عملیاتی دسته‌بندی می‌شوند. این شش حوزه در مجموع ۲۴ خرده‌مضمون را شامل می‌شوند که طیفی از مسائل فنی، حقوقی، سازمانی و اخلاقی را پوشش می‌دهند. بررسی عمیق‌تر نشان داد که بسیاری از این چالش‌ها ناشی از نبود چارچوب‌های حکمرانی اخلاقی و شفاف، ضعف کیفیت و تنوع داده‌های آموزشی، ابهام در فرآیند تصمیم‌گیری مدل‌ها، و عدم آمادگی سازمان‌ها از نظر فرهنگ و ساختار برای پذیرش فناوری‌های نوین است. نتایج این پژوهش می‌تواند به‌عنوان راهنمای عملی برای مدیران، سیاست‌گذاران و توسعه‌دهندگان در مسیر بهره‌گیری مسئولانه و پایدار از هوش مصنوعی مولد مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying and Managing the Challenges of Generative Artificial Intelligence in Organizations with an Emphasis on Ethical and Sustainability Aspects

نویسنده [English]

  • Sanaz Shafiee
Department of Information Technology Management, Payame Noor University, Tehran, Iran.
چکیده [English]

With the rapid growth of generative artificial intelligence (AI) technologies and their expanding applications in various domains, the need to examine the consequences and challenges of employing this technology has become increasingly evident. The aim of this study was to identify and analyze the challenges of implementing generative AI in organizations. This research employed a qualitative approach using thematic analysis, with data collected through semi-structured interviews with experts. The findings revealed that the identified challenges can be categorized into six main themes: transparency and accountability; legal, security, and governance issues; human and cultural aspects; content quality and credibility; and economic and operational considerations. These six areas encompass 24 sub-themes that address a wide range of technical, legal, organizational, and ethical issues. Further analysis showed that many of these challenges stem from the absence of clear and ethical governance frameworks, poor quality and lack of diversity in training data, ambiguity in model decision-making processes, and organizations’ unpreparedness in terms of culture and structure to adopt emerging technologies. These findings can serve as a practical guide for managers, policymakers, and developers in the responsible and sustainable adoption of generative AI.

کلیدواژه‌ها [English]

  • Generative Artificial Intelligence
  • Technology Ethics
  • Data Governance
  • Organizational Challenges
  • Digital Sustainability
  1. منابع

     

    1. AI, N. (2023). "Artificial intelligence risk management framework (AI RMF 1.0)". URL: https://nvlpubs. nist. gov/nistpubs/ai/nist. ai, 100-101. https://doi.org/10.6028/NIST.AI.100-1
    2. Al-kfairy, M., Mustafa, D., Kshetri, N., Insiew, M. & Alfandi, O. (2024a) "A Systematic Review and Analysis of Ethical Challenges of Generative Ai: An Interdisciplinary Perspective". Available at SSRN 4833030.
    3. Al-kfairy, M., Mustafa, D., Kshetri, N., Insiew, M. & Alfandi, O. (2024b). "Ethical Challenges and Solutions of Generative AI: An Interdisciplinary Perspective". Informatics, 11(3): 58. https://doi.org/10.1016/j.orgdyn.2024.101032
    4. Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. (2021). "On the dangers of stochastic parrots: Can language models be too big? " Paper presented at the Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. https://doi.org/10.1145/3442188.3445922
    5. Braun, V. & Clarke, V. (2006). "Using thematic analysis in psychology". Qualitative research in psychology, 3(2), 77-101. DOI: 1191/1478088706qp063oa
    6. Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. & Sun, L. (2025). "A Survey of AI-Generated Content (AIGC)". ACM Comput. Surv., 57(5), Article 125. doi: 10.1145/3704262
    7. Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V., Tramer, F., . . . Wallace, E. (2023). "Extracting training data from diffusion models". Paper presented at the 32nd USENIX security symposium (USENIX Security 23).
      https://doi.org/10.48550/arXiv.2301.13188
    8. Cath, C. (2018). "Governing artificial intelligence: ethical, legal and technical opportunities and challenges". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180080. https://doi.org/10.1098/rsta.2018.0080
    9. Chakraborty, S. (2023). "AI and ethics: Navigating the moral landscape", Investigating the Impact of AI on Ethics and Spirituality (pp. 25-33): IGI Global. DOI: 10.4018/978-1-6684-9196-6
    10. Chen, Z. (2023). "Ethics and discrimination in artificial intelligence-enabled recruitment practices". Humanities and Social Sciences Communications, 10(1): 567. doi: 10.1057/s41599-023-02079-x
    11. Chui, M., Hazan, E., Roberts, R., Singla, A., & Smaje, K. (2023). "The economic potential of generative AI".
    12. Corrêa, N. K., Galvão, C., Santos, J. W., Del Pino, C., Pinto, E. P., Barbosa, C., . . . Terem, E. (2023). Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance". Patterns, 4(10). https://doi.org/10.1016/j.patter.2023.100857
    13. Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., . . . Wright, R. (2023). "Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. doi: https://doi.org/10.1016/j.ijinfomgt.2023.102642
    14. European Cmmission, F. (2021). "Regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts".
    15. Ferrara, E. (2023). "Should chatgpt be biased? challenges and risks of bias in large language models". arXiv preprint arXiv:2304.03738. https://doi.org/10.48550/arXiv.2304.03738
    16. Floridi, L. (2023). "AI as agency without intelligence: On ChatGPT, large language models, and other generative models". Philosophy & technology, 36(1), 15.
      https://doi.org/10.1007/s13347-023-00621-y
    17. García-López, I. M. & Trujillo-Liñán, L. (2025). "Ethical and regulatory challenges of Generative AI in education: a systematic review". Paper presented at the Frontiers in Educatio https://doi.org/10.3389/feduc.2025.1565938
    18. Gupta, D. (2024). "Generative AI and Deep fake s: Ethical Implications and Detection Techniques". Journal of Science, Technology and Engineering Research, 1(1): 45-56. DOI:https://doi.org/10.64206/21rgkc40
    19. Hagendorff, T. (2024). "Mapping the ethics of generative AI: A comprehensive scoping review". Minds and Machines, 34(4), 39. https://doi.org/10.1007/s11023-024-09694-w
    20. Iqbal, Q., Khan, D. & Salis, M. (2024). "Navigating the Ethical and Legal Landscape of Artificial Intelligence in Global Governance: A Comprehensive Analysis". Journal of Asian Development Studies, 13(2): 945-954. DOI: https://doi.org/10.62345/jads.2024.13.2.75
    21. Jobin, A., Ienca, M., & Vayena, E. (2019). "The global landscape of AI ethics guidelines". Nature machine intelligence, 1(9): 389-399. https://doi.org/10.1038/s42256-019-0088-2
    22. Kay, J., Kasirzadeh, A., & Mohamed, S. (2024). "Epistemic injustice in generative AI". Paper presented at the Proceedings of the AAAI/ACM Conference on AI, Ethics, and Societ DOI: https://doi.org/10.1609/aies.v7i1.31671
    23. Macdonald, C., Adeloye, D., Sheikh, A. & Rudan, I. (2023). "Can ChatGPT draft a research article? An example of population-level vaccine effectiveness analysis". Journal of global health, 13, 01003. doi: 10.7189/jogh.13.01003.
    24. Marchal, N., Xu, R., Elasmar, R., Gabriel, I., Goldberg, B. & Isaac, W. (2024). "Generative AI misuse: A taxonomy of tactics and insights from real-world data". arXiv preprint arXiv:2406.13843. https://doi.org/10.48550/arXiv.2406.13843
    25. Ning, Y., Teixayavong, S., Shang, Y., Savulescu, J., Nagaraj, V., Miao, D., . . . Liu, M. (2024). "Generative artificial intelligence and ethical considerations in health care: a scoping review and ethics checklist". The Lancet Digital Health, 6(11), e848-e856. doi: 10.1016/S2589-7500(24)00143-2
    26. (2024). Facts Not Fakes: Tackling Disinformation, Strengthening Information Integrity: OECD Publishing.
    27. Raghavan, M., Barocas, S., Kleinberg, J. & Levy, K. (2020). "Mitigating bias in algorithmic hiring: Evaluating claims and practices". Paper presented at the Proceedings of the 2020 conference on fairness, accountability, and transparency. https://doi.org/10.1145/3351095.3372828
    28. Rana, N. P., Pillai, R., Sivathanu, B. & Malik, N. (2024). "Assessing the nexus of Generative AI adoption, ethical considerations and organizational performance". Technovation, 135, 103064. doi: https://doi.org/10.1016/j.technovation.2024.103064
    29. Singh, K., Chatterjee, S. & Mariani, M. (2024). "Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamism". Technovation, 133, 103021. doi: https://doi.org/10.1016/j.technovation.2024.103021
    30. Surbakti, F. P. S. (2025). "Systematic Literature Review on Generative AI: Ethical Challenges and Opportunities. International Journal of Advanced Computer Science and Applications (IJACSA), 16 (5).
    31. (2022). Recommendation on the ethics of artificial intelligence: United Nations Educational, Scientific and Cultural Organization.
    32. Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., . . . Kasirzadeh, A. (2021). "Ethical and social risks of harm from language models". arXiv preprint arXiv:2112.04359. https://doi.org/10.48550/arXiv.2112.04359. https://doi.org/10.3389/feduc.2023.1331607
    33. Williams, R. T. (2024). "The ethical implications of using generative chatbots in higher education". Paper presented at the Frontiers in Education. ttps://doi.org/10.3389/feduc.2023.1331607